Preliminary

Overview

The LA1823 is a single-chip tuner IC that incorporates FM/AM and MPX circuits and supports electronic tuning.
The built-in MPX-VCO allows this IC to be adjustment-free and to require no external components.

Features

- FM, AM and MPX integrated in a single-chip.
- FM front-end : Local OSC voltage reduced.
- Adjustment free MPX-VCO
: No ceramic resonator used.
- Adjustment free FM-DET
: Using ceramic discriminator.
- Build in FM stereo indicator.
- Build in FM/AM IF count buffer.
- Build in AM OSC buffer.
- Package : DIP-24S.

Package Dimensions

unit: mm
3067A

Functions

FM : RF amplifier, mixer, oscillator, IF amplifier, detector, signal meter, IF count buffer output.
AM : RF amplifier, mixer, oscillator (with ALC), oscillator buffer output, IF amplifier, detector, AGC, IF count buffer output.
MPX : PLL stereo decoder, stereo indicator, VCO on chip, forced monaural, Audio mute.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VCC max $^{\prime 2}$		7.0	V
Indicator drive current	LED	Pin 8	20	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$	300	mW
Operating temperature	Topg		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	$V_{C C}$		4.5	V
Operation supply voltage range	V_{CC} op		1.8 to 6.0	V

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LA1823

Operating Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=4.5 \mathrm{~V}$, in the specified test circuit using the IC59-2043-2 socket (Yamaichi Electric Co.,Ltd.)
Quiescent supply current

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
FM-mode quiescent current	ICC(FM)	No input	10.0	15.0	20.0	mA
AM-mode quiescent current	ICC(AM)	No input	6.5	9.2	14.5	mA

FM front-end characteristics at $\mathrm{fc}=98 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 22.5 \mathrm{kHz} \mathrm{dev}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input limiting voltage	-3 dB L.S.	Referenced to $\mathrm{V}_{\mathrm{IN}}=60 \mathrm{~dB} \mu \mathrm{~V}$ EMF, 22.5 kHz dev, a 3 dB down input		12		dB $\mu \mathrm{V}$ EMF
Local oscillator voltage	VOSC	$\begin{aligned} & \text { fosc }=108.7 \mathrm{MHz} \\ & \text { with FET buffer gain } \fallingdotseq 0 \mathrm{~dB} \end{aligned}$		100		mVrms

FM IF characteristics (monaural) at $\mathrm{fc}=10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 75 \mathrm{kHz} \mathrm{dev}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Demodulation output	VO	V IN $=100 \mathrm{~dB} \mu \mathrm{~V}$	135	180	240	mVrms
Signal-to-noise ratio	S/N	$\mathrm{V}_{\text {IN }}=100 \mathrm{~dB} \mu \mathrm{~V}$	63	72		dB
Total harmonic distortion (mono)	THD	$\mathrm{V}_{\text {IN }}=100 \mathrm{~dB} \mathrm{\mu} \mathrm{~V}$		0.5	1.5	\%
Input limiting voltage	-3 dB L.S.	Referenced to $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~dB} \mu \mathrm{~V}$, 75 kHz dev, a 3 dB down input	31	38	45	$\mathrm{dB} \mu \mathrm{V}$
IF count buffer on level	IF buff on	IF count buffer on	35	45	55	$\mathrm{dB} \mu \mathrm{V}$
IF count buffer output	VIF buff	Test from pin 7 for V IN $=100 \mathrm{~dB} \mu \mathrm{~V}$, no modulation	120	180	240	mVrms

FM IF characteristics (stereo) at $\mathrm{fc}=10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 75 \mathrm{kHz} \mathrm{dev}, \mathrm{L}+\mathrm{R}=90 \%$, PILOT $=10 \%$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Separation	SEP	$\mathrm{V}_{\text {IN }}=100 \mathrm{~dB} \mathrm{\mu} \mu \mathrm{~V}$	25	40		dB
Stereo on level	ST-ON	VIN $=100 \mathrm{~dB} \mathrm{\mu V}$, Pilot modulation	2.4	3.5	7.2	\%
Total harmonic distortion (main)	THD	$\mathrm{V}_{\text {IN }}=100 \mathrm{~dB} \mu \mathrm{~V}$		0.5	1.7	\%

AM characteristics at $\mathrm{fc}=1 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, \bmod =30 \%$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Detector output	$\mathrm{V}_{\mathrm{O}}(1)$	$\mathrm{V}_{\text {IN }}=23 \mathrm{~dB} \mu \mathrm{~V}$	17	30	53	mVrms
	$\mathrm{V}_{\mathrm{O}}(2)$	$\mathrm{V}_{\text {IN }}=80 \mathrm{~dB} \mu \mathrm{~V}$	50	75	120	mVrms
Signal-to-noise ratio	$\mathrm{S} / \mathrm{N}(1)$	$\mathrm{V}_{\text {IN }}=23 \mathrm{~dB} \mu \mathrm{~V}$	15	20		dB
	$\mathrm{S} / \mathrm{N}(2)$	$\mathrm{V}_{\text {IN }}=80 \mathrm{~dB} \mu \mathrm{~V}$	47	54		dB
Total harmonic distortion	THD	$\mathrm{V}_{\text {IN }}=80 \mathrm{~dB} \mu \mathrm{~V}$		0.5	1.5	\%
OSC buffer output	VOSC buff	Test from pin 8 for no input	80	100	160	mVrms
IF count buffer on level	IF buff on	IF count buffer on	15	25	32	$\mathrm{dB} \mathrm{\mu} \mathrm{~V}$
IF count buffer output	VIF buff	Test from pin 7 for V IN $=80 \mathrm{~dB} \mu \mathrm{~V}$, no modulation	110	180	220	mVrms

Block Diagram

Sample Application Circuit Diagram

Coil specifications (bottom view)

-FM-BPF : SA-309 (Sumida)	88 MHz to 108 MHz		
- FM-RF : SA-149 (Sumida)	3.6 mm diameter, air core, 0.6 mm wire, 4.5 T		
- FM-OSC : SA-151 (Sumida)	3.6 mm diameter, air core, 0.6 mm wire, 3.5 T		
- FM-IF filter, discriminator : SK107M1-AE-10, CDF107F-AE-029 (Toko) SFE10.7MA5, CDA10.7MG1-A (Murata) : tentative			
-AM-OSC : SA-181 (Sumida) ILA00302	6-4 $\quad 37 \mathrm{~T}$ 3-1 0.06UEW fo $=796 \mathrm{kHz}$ Qo ≥ 80 $\mathrm{~L}=140 \mu \mathrm{H}$: L7BRS-3132AQ (Toko)	$3-1$ 64 T $6-4$ 32 T $0.06-2 \mathrm{UEW}$ fo $=796 \mathrm{kHz}$ $\mathrm{Qo} \geq 65$ $\mathrm{~L}=140 \mu \mathrm{H}$
-AM-MIX : SA-1136 (Sumida)	$3-2$ 122 T $4-6$ 9 T $2-1$ 62 T 0.06 UEW fo $=450 \mathrm{kHz}, \mathrm{Qo} \geq 65$ 180 pF internal	: PCFAZ-082 (Toko)	$1-2$ 47 T $2-3$ 100 T $4-6$ 12 T fo $=450 \mathrm{kHz}$ 180 pF internal With AM-IF filter
- AM-IF filter : SFU450B (Murata)			
-MW Bar-antenna : C8E-A010 	$\begin{aligned} & \text { (Toko) } \\ & 1-2 \quad 67 \mathrm{~T} \\ & 3-4 \quad 9 \mathrm{~T} \\ & \mathrm{fo}=796 \mathrm{kHz} \\ & \mathrm{Qu}=180 \mathrm{~min} \\ & \mathrm{~L}=260 \mu \mathrm{H} \end{aligned}$		

Pin Descriptions and Quiescent Voltage at $\mathrm{VCC}=4.5 \mathrm{~V}$

Pin number	Function	Quiescent voltage (V)		Equivalent circuit	Remarks
		AM	FM		
1	AM-RF input	1.2	1.2		Connect the AM antenna coil between this pin and pin 2 (Reg)
2	Reg	1.2	1.2		
3	AM-OSC	4.5	4.5	ILA00309	Connect the AM oscillator coil between this pin and pin 4 (VCCl^{2})
4	VCC1	4.5	4.5		AM/FM-IF/MPX block VCC
5	FM-MIX output	2.4	2.2	ILA00310	Rout $=270 \Omega$
6	GND1	0	0		AM/FM-IF/MPX block ground
7	IF buffer output and mute switch	4.5	4.5		$\mathrm{V}_{7} \geq 1.3 \mathrm{~V}$: IF buffer output and muting on

$\begin{gathered} \text { Pin } \\ \text { number } \end{gathered}$	Function	Quiescent voltage (V)		Equivalent circuit	Remarks
		AM	FM		
8	Stereo indicator, AM-oscillator buffer output	4.5	4.5	ILA00312	Active-low Open-collector output AM oscillator signal is output in AM mode
9	AM-MIX output	4.5	4.5		Connect the AM mixer coil between this pin and pin 4 (VCC1)
10	FM-IF input	1.2	1.2		Rin $=330 \Omega$
11	AM-IF input	1.2	1.2		Rin $=2 \mathrm{k} \Omega$
12	AM-AGC output and FM signal meter output	0.4	0.1		Internal load resistance $\mathrm{R}=16.6 \mathrm{k} \Omega$
13	FM-DET	3.9	3.7	(13)	Recommended ceramic discriminator : CDF107F-AE-029 (Toko) CDA10.7MG** (Murata)

LA1823

Pinnumber	Function	Quiescent voltage (V)		Equivalent circuit	Remarks
		AM	FM		
14	Pilot detector filter (forced mono)	2.9	3.8	 ILA00318	Forced monaural mode when pin 14 is connected to ground
15	Phase comparator filter (AM/FM switch)	0	3.8	ILA00319	FM mode is when pin 15 is open, and AM mode is when pin 15 is connected to ground
16 17	L output R output	1.2	1.2		Rout $=7.5 \mathrm{k} \Omega$
18	MPX input	1.2	1.2		Rin $=50 \mathrm{k} \Omega$
19	AM/FM detector output	0.3	1.0		Output impedance $\mathrm{AM}:$ Rout $=50 \mathrm{k} \Omega$ FM : Rout $=500 \Omega$ The channel separation can be adjusted with an external capacitor connected between this pin and ground
20	FM-OSC	4.5	4.4	ILA00323	Connect the FM oscillator coil between this pin and pin 21 (VCC2)

LA1823

$\begin{gathered} \text { Pin } \\ \text { number } \end{gathered}$	Function	Quiescent voltage (V)		Equivalent circuit	Remarks
		AM	FM		
21	VCC2	4.5	4.4		FM-FE block VCC Power is supplied from pin 4 (VCC1) via external resistor (10 Ω)
22 24	FM-RF output FM-RF input	4.5 0	4.4 0.9		Connect the FM-RF coil between this pin and pin $21\left(\mathrm{VCC}^{2}\right)$ $\operatorname{Rin}=1.8 \mathrm{k} \Omega$
23	GND2	0	0		FM-FE block ground

FM Characteristics

LA1823

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2001. Specifications and information herein are subject to change without notice.

